327 research outputs found

    Approximation in stochastic integer programming

    Get PDF
    Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solutions. However, efficiency in the complexity theoretical sense is usually not taken into account. Quality statements mostly remain restricted to convergence to an optimal solution without accompanying implications on the running time of the algorithms for attaining more and more accurate solutions. However, over the last twenty years also some studies on performance analysis of approximation algorithms for stochastic programming have appeared. In this direction we find both probabilistic analysis and worst-case analysis. There have been studies on performance ratios and on absolute divergence from optimality. Only recently the complexity of stochastic programming problems has been addressed, indeed confirming that these problems are harder than most combinatorial optimization problems.

    Optimal Algorithms for Scheduling under Time-of-Use Tariffs

    Get PDF
    We consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the sum of (weighted) completion times. It is not difficult to derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan on unrelated machines. The problem of minimizing the total (weighted) completion time is considerably harder, even on a single machine. We present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time-slots to be used for scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for.Comment: 17 pages; A preliminary version of this paper with a subset of results appeared in the Proceedings of MFCS 201

    On unrooted and root-uncertain variants of several well-known phylogenetic network problems

    Get PDF
    The hybridization number problem requires us to embed a set of binary rooted phylogenetic trees into a binary rooted phylogenetic network such that the number of nodes with indegree two is minimized. However, from a biological point of view accurately inferring the root location in a phylogenetic tree is notoriously difficult and poor root placement can artificially inflate the hybridization number. To this end we study a number of relaxed variants of this problem. We start by showing that the fundamental problem of determining whether an \emph{unrooted} phylogenetic network displays (i.e. embeds) an \emph{unrooted} phylogenetic tree, is NP-hard. On the positive side we show that this problem is FPT in reticulation number. In the rooted case the corresponding FPT result is trivial, but here we require more subtle argumentation. Next we show that the hybridization number problem for unrooted networks (when given two unrooted trees) is equivalent to the problem of computing the Tree Bisection and Reconnect (TBR) distance of the two unrooted trees. In the third part of the paper we consider the "root uncertain" variant of hybridization number. Here we are free to choose the root location in each of a set of unrooted input trees such that the hybridization number of the resulting rooted trees is minimized. On the negative side we show that this problem is APX-hard. On the positive side, we show that the problem is FPT in the hybridization number, via kernelization, for any number of input trees.Comment: 28 pages, 8 Figure

    A decomposition theory for vertex enumeration of convex polyhedra

    Get PDF
    In the last years the vertex enumeration problem of polyhedra has seen a revival in the study of metabolic networks, which increased the demand for efficient vertex enumeration algorit

    Constructing level-2 phylogenetic networks from triplets

    Full text link
    Jansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of species), it is possible to determine in polynomial time whether there exists a level-1 network consistent with T, and if so to construct such a network. They also showed that, unlike in the case of trees (i.e. level-0 networks), the problem becomes NP-hard when the input is non-dense. Here we further extend this work by showing that, when the set of input triplets is dense, the problem is even polynomial-time solvable for the construction of level-2 networks. This shows that, assuming density, it is tractable to construct plausible evolutionary histories from input triplets even when such histories are heavily non-tree like. This further strengthens the case for the use of triplet-based methods in the construction of phylogenetic networks. We also show that, in the non-dense case, the level-2 problem remains NP-hard
    corecore